34^2=18^2+x^2

Simple and best practice solution for 34^2=18^2+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34^2=18^2+x^2 equation:



34^2=18^2+x^2
We move all terms to the left:
34^2-(18^2+x^2)=0
We add all the numbers together, and all the variables
-(18^2+x^2)+1156=0
We get rid of parentheses
-x^2+1156-18^2=0
We add all the numbers together, and all the variables
-1x^2+832=0
a = -1; b = 0; c = +832;
Δ = b2-4ac
Δ = 02-4·(-1)·832
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{13}}{2*-1}=\frac{0-16\sqrt{13}}{-2} =-\frac{16\sqrt{13}}{-2} =-\frac{8\sqrt{13}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{13}}{2*-1}=\frac{0+16\sqrt{13}}{-2} =\frac{16\sqrt{13}}{-2} =\frac{8\sqrt{13}}{-1} $

See similar equations:

| 28b-9=747 | | 24+2x=3x+2(2x4) | | 46-c=39 | | 7.3x+2.6=12.4x+1.5 | | -3x-83=6x+97 | | 39=j/7+33 | | 8c+8=56 | | 3(2+x)=3x+(2-x) | | 2/5=-4/5c | | 70+n/2=10 | | 5=b/3-3 | | 3/7x+4/7x=-5/7 | | 1.4y=8.4 | | w/10-2=1 | | y2-4y-21=0 | | -5/7=3x+1 | | -6+3/5c+19=4 | | 24-2k=6 | | 4-7h=18 | | 6+8((4-2x)=134 | | 3x-3=8-2x | | 9y+7=34 | | 1+8m=41 | | -1/4+f/5=1/2 | | 5d-17+20-10d=18 | | t/8=10 | | 5a=108 | | 3x+41=47 | | 2/3a=10/4 | | 2/3a=41/4 | | -8/3+d/6=2/6 | | 8x-10=16+9x |

Equations solver categories